0 Ju n 20 08 ON EXOTIC MODULAR TENSOR CATEGORIES
نویسنده
چکیده
It has been conjectured that every (2+1)-TQFT is a Chern-SimonsWitten (CSW) theory labeled by a pair (G, λ), where G is a compact Lie group, and λ ∈ H(BG;Z) a cohomology class. We study two TQFTs constructed from Jones’ subfactor theory which are believed to be counterexamples to this conjecture: one is the quantum double of the even sectors of the E6 subfactor, and the other is the quantum double of the even sectors of the Haagerup subfactor. We cannot prove mathematically that the two TQFTs are indeed counterexamples because CSW TQFTs, while physically defined, are not yet mathematically constructed for every pair (G, λ). The cases that are constructed mathematically include: (1) G is a finite group—the Dijkgraaf-Witten TQFTs; (2) G is torus T n; (3) G is a connected semi-simple Lie group—the Reshetikhin-Turaev TQFTs. We prove that the two TQFTs are not among those mathematically constructed TQFTs or their direct products. Both TQFTs are of the Turaev-Viro type: quantum doubles of spherical tensor categories. We further prove that neither TQFT is a quantum double of a braided fusion category, and give evidence that neither is an orbifold or coset of TQFTs above. Moreover, representation of the braid groups from the half E6 TQFT can be used to build universal topological quantum computers, and the same is expected for the Haagerup case.
منابع مشابه
ar X iv : 0 81 1 . 40 90 v 3 [ m at h . Q A ] 2 3 Ju n 20 09 MODULE CATEGORIES OVER POINTED HOPF ALGEBRAS
We develop some techniques for studying exact module categories over some families of pointed finite-dimensional Hopf algebras. As an application we classify exact module categories over the tensor category of representations of the small quantum groups uq(sl2).
متن کاملar X iv : 0 90 6 . 34 15 v 1 [ m at h . Q A ] 1 8 Ju n 20 09 QUIVERS , QUASI - QUANTUM GROUPS AND FINITE TENSOR CATEGORIES
We study finite quasi-quantum groups in their quiver setting developed recently by the first author. We obtain a classification of finite-dimensional pointed Majid algebras of finite corepresentation type, or equivalently a classification of elementary quasi-Hopf algebras of finite representation type, over the field of complex numbers. By the Tannaka-Krein duality principle, this provides a cl...
متن کاملar X iv : 0 90 6 . 55 90 v 1 [ gr - q c ] 3 0 Ju n 20 09 On Wormholes supported by phantom energy
By a combination of analytical and numerical techniques, we demonstrate the existence of spherical, asymptotically flat traversable wormholes supported by exotic matter whose stress tensor relative to the orthonormal frame of Killing observers takes the form of a perfect fluid possessing anisotropic pressures and subject to linear equations of state: τ = λρc, P = μρc. We show that there exists ...
متن کاملVerlinde conjecture and modular tensor categories
Let V be a simple vertex operator algebra satisfying the following conditions: (i) V(n) = 0 for n < 0, V(0) = C1 and the contragredient module V ′ is isomorphic to V as a V -module. (ii) Every N-gradable weak V -module is completely reducible. (iii) V is C2-cofinite. We announce a proof of the Verlinde conjecture for V , that is, of the statement that the matrices formed by the fusion rules amo...
متن کاملVertex operator algebras, the Verlinde conjecture, and modular tensor categories.
Let V be a simple vertex operator algebra satisfying the following conditions: (i) V(n)) = 0 for n < 0, V(0)=C1, and the contragredient module V' is isomorphic to V as a V-module; (ii) every N-gradable weak V-module is completely reducible; (iii) V is C(2)-cofinite. We announce a proof of the Verlinde conjecture for V, that is, of the statement that the matrices formed by the fusion rules among...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008